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A NOTE ON GENERALIZED SINGULAR GRONWALL

INEQUALITIES

Bowon Kang* and Namjip Koo**

Abstract. This paper deals an impulsive fractional integral in-
equality with singular kernel which can be used in getting the ex-
plicit estimate of solutions of impulsive fractional differential equa-
tions.

1. Introduction

Integral inequalities of various Gronwall types play important roles
in the study of the qualitative properties of solutions of differential and
integral equations. The classic Gronwall-Bellman inequality provided
explicit bounds on solutions of a class of linear integral inequalities. On
the basis of various motivations, this inequality has been extended and
used in various contexts [1, 4, 7, 8, 12, 13, 15]. L. Wang et al. [14]
developed some generalized singular Gronwall inequalities to study ex-
istence, uniqueness and data dependent results of solutions to impulsive
fractional differential equations.

In this paper we obtain an impulsive integral inequality with singu-
lar kernel by using the Caputo fractional integral inequality of Gronwall
type. This result improves some generalized singular Gronwall inequal-
ities given in [14].
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2. Main results

In this section we present an integral inequality which can be used in
getting the explicit estimate of solutions of impulsive fractional differen-
tial equations. This proof is based on the fractional integral inequalities.

We also obtain the integral inequality with singular kernel which ob-
tained from the similar argument to the proof of Corollary 2.2.1 in [11].

Throughout this paper, let 0 < q < 1, t0 ∈ R+ = [0,∞), and
J = [t0, T ] be a subset of R (some T ≤ +∞). Suppose that (tk) is a finite
sequence in R satisfying 0 ≤ t0 < t1 < · · · < tm < tm+1 = T . For a func-
tion u : J → R, u(t+k ) = limε→0+ u(tk+ε) and u(t−k ) = limε→0− u(tk+ε)
represent the right and left limits of u(t) at t = tk. Denote by C(J,R)
the set of all continuous functions from J into R. Also, let PC(J,R) be
the set of all functions from J into R as follows:

PC(J,R) = {u : J → R|u ∈ C((tk, tk+1],R), k = 0, 1, · · · ,m, and

there exist u(t−k ) and u(t+k ), k = 1, · · · ,m, with u(t−k ) = u(tk)}.

For a detailed discussion of impulsive integral inequalities and some
basic concepts concerning impulsive differential equations, we refer the
reader to [2, 10].

Let us recall the Caputo fractional integral inequality of Gronwall
type which can be found in [3, Theorem 3.6] and [15, Corollary 2].

Lemma 2.1. [11] Let m ∈ C(J,R) and suppose that

(2.1) m(t) ≤ m0 +
L

Γ(q)

∫ t

t0

(t− s)q−1m(s)ds, t ∈ J.

Then we have

m(t) ≤ m0Eq(L(t− t0)
q), t ∈ J,

where m0 and L are nonnegative constants, and Eq is the Mittag-Leffler
function [9] given by

Eq(z) =

∞∑
k=0

zk

Γ(kq + 1)
, z ∈ C.

We can extend the result of Theorem 2.6 in [6] to case of infinite
sequence (tk)

∞
k=1 with T = ∞. The proof of the following result is

adapted from the proof of Theorem 2.6 in [6].
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Theorem 2.2. Let u ∈ PC(R+,R) satisfies the following inequality

u(t) ≤ c+ λ

∫ t

t0

(t− s)q−1u(s)ds+
∑

t0<tk<t

βku(t
−
k ), k ∈ N,(2.2)

where c, λ, and βk(k ∈ N) are nonnegative constants. Then

u(t) ≤ cEq(Γ(q)λ(t− t0)
q), t ∈ [t0, t1](2.3)

and

u(t) ≤ c
k∏

i=1

(1 + βiEq(Γ(q)λ(ti − t0)
q))Eq(Γ(q)λ(t− t0)

q),(2.4)

where t ∈ (tk, tk+1], k ∈ N.

Proof. Let t ∈ [t0,∞). From Lemma 2.1, we have

u(t) ≤ cEq(Γ(q)λ(t− t0)
q), t ∈ [t0, t1].

Note that (2.4) holds for k = 0. Suppose that (2.4) holds for k = j ∈
N.

For t ∈ (tj+1, tj+2], we derive

u(t) ≤ [c+

j+1∑
i=1

βiu(t
−
i )]Eq(Γ(q)λ(t− t0)

q)

= [c+

j∑
i=1

βiu(t
−
i ) + βj+1u(t

−
j+1)]Eq(Γ(q)λ(t− t0)

q)

≤ [c(

j∏
i=1

(1 + βiEq(Γ(q)λ(ti − t0)
q))) + βj+1u(t

−
j+1)]Eq(Γ(q)λ(t− t0)

q)

≤ [c(

j∏
i=1

(1 + βiEq(Γ(q)λ(ti − t0)
q))) + βj+1c(

j∏
i=1

(1+

βiEq(Γ(q)λ(ti − t0)
q)))Eq(Γ(q)λ(tj+1 − t0)

q)]Eq(Γ(q)λ(t− t0)
q)

= c

j∏
i=1

(1 + βiEq(Γ(q)λ(ti − t0)
q))

(1 + βj+1Eq(Γ(q)λ(tj+1 − t0)
q))Eq(Γ(q)λ(t− t0)

q)

= c

j+1∏
i=1

(1 + βiEq(Γ(q)λ(ti − t0)
q))Eq(Γ(q)λ(t− t0)

q), t ∈ (tj+1, tj+2].
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Hence, it follows from induction that (2.4) holds for every k ∈ N. This
completes the proof.

We obtain the following result using similar argument as in the proof of
Corollary 2.7 in [6].

Theorem 2.3. [6, Corollary 2.7] Suppose that u ∈ PC(R+,R) sat-
isfies the following inequality

|u(t)| ≤ c1(t) + c2

∫ t

t0

(t− s)q−1|u(s)|ds+
∑

t0<tk<t

θk|u(t−k )|, k ∈ N,

where c1(t) is positive continuous and nondecreasing on R+, and c2, θk(k ∈
N) are nonnegative constants. Then

|u(t)| ≤ c1(t)
k∏

i=1

(1 + θiEq(c2Γ(q)(ti − t0)
q))Eq(c2Γ(q)(t− t0)

q),

wheret ∈ (tk, tk+1], and k ∈ N.

We obtain the following result in [14, Lemma 2.8] as a corollary of
Theorem 2.3.

Corollary 2.4. Let c1(t) be nonnegative continuous and nonde-
creasing on R+. Suppose that u ∈ PC(R+,R) satisfies the following
inequality

|u(t)| ≤ c1(t) + c2

∫ t

0
(t− s)q−1|u(s)|ds+

∑
0<tk<t

θk|u(t−k )|, k ∈ N,

where c2 and θk(k ∈ N) are nonnegative constants. Then

|u(t)| ≤ c1(t)
k∏

i=1

(1 + θiEq(c2Γ(q)t
q))Eq(c2Γ(q)t

q)

≤ c1(t)(1 + θEq(c2Γ(q)t
q))kEq(c2Γ(q)t

q), t ∈ (tk, tk+1], k ∈ N,

where θ = sup{θk : k ∈ N} exists.
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Proof. From Theorem 2.3 and the nondecreasing property of Eq(t
q)

[5, Lemma 2.4], we have

|u(t)| ≤ c1(t)
k∏

i=1

(1 + θiEq(c2Γ(q)t
q
i ))Eq(c2Γ(q)t

q)

≤ c1(t)[

k∏
i=1

(1 + θEq(c2Γ(q)t
q))]Eq(c2Γ(q)t

q)

= c1(t)(1 + θEq(c2Γ(q)t
q))kEq(c2Γ(q)t

q), t ∈ (tk, tk+1],

where k ∈ N and θ = sup{θk : k ∈ N}. This completes the proof.
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